Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systemes.pdf

Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systemes PDF

José A Langa

Date de parution

Achetez et téléchargez ebook Attractors for infinite-dimensional non-autonomous dynamical systems (Applied Mathematical Sciences Book 182) (English Edition): Boutique Kindle - Differential Equations : … Amazon.fr - Attractors for Infinite-Dimensional Non ...

1.28 MB Taille du fichier
9781461445807 ISBN
Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systemes.pdf

Technik

PC et Mac

Lisez l'eBook immédiatement après l'avoir téléchargé via "Lire maintenant" dans votre navigateur ou avec le logiciel de lecture gratuit Adobe Digital Editions.

iOS & Android

Pour tablettes et smartphones: notre application de lecture tolino gratuite

eBook Reader

Téléchargez l'eBook directement sur le lecteur dans la boutique www.mynite.com.au ou transférez-le avec le logiciel gratuit Sony READER FOR PC / Mac ou Adobe Digital Editions.

Reader

Après la synchronisation automatique, ouvrez le livre électronique sur le lecteur ou transférez-le manuellement sur votre appareil tolino à l'aide du logiciel gratuit Adobe Digital Editions.

Notes actuelles

avatar
Sofya Voigtuh

In the mathematical field of dynamical systems, an attractor is a set of numerical values toward ... In finite-dimensional systems, the evolving variable may be represented ... A trajectory of the dynamical system in the attractor does not have to satisfy any ... The basins of attraction can be infinite in number and arbitrarily small.

avatar
Mattio Müllers

Attractors for infinite-dimensional non-autonomous ...

avatar
Noels Schulzen

Attractors for Infinite-Dimensional Non … Buy Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems (Applied Mathematical Sciences) 2014 by Alexandre Carvalho, Jos a. Langa, James C. Robinson (ISBN: 9781461445807) from Amazon's Book Store. Everyday low prices and free delivery on eligible orders.

avatar
Jason Leghmann

between the chaotic attractors of these low dimensional systems and those of infinite dimensional systems has not yet been established. Although we cannot ...

avatar
Jessica Kolhmann

SIAM Journal on Applied Dynamical Systems In this paper we introduce the concept of a gradient random dynamical system as a random semiflow possessing a continuous random Lyapunov function which describes the asymptotic regime of the system. Thus, we are able to analyze the dynamical properties on a random attractor described by its Morse decomposition for infinite-dimensional random dynamical systems. In particular, if a random